Source code for fastNLP.models.snli

import torch
import torch.nn as nn
import torch.nn.functional as F

from fastNLP.models.base_model import BaseModel
from fastNLP.modules import decoder as Decoder
from fastNLP.modules import encoder as Encoder
from fastNLP.modules import aggregator as Aggregator


my_inf = 10e12


[docs]class ESIM(BaseModel): """ PyTorch Network for SNLI task using ESIM model. """ def __init__(self, **kwargs): super(ESIM, self).__init__() self.vocab_size = kwargs["vocab_size"] self.embed_dim = kwargs["embed_dim"] self.hidden_size = kwargs["hidden_size"] self.batch_first = kwargs["batch_first"] self.dropout = kwargs["dropout"] self.n_labels = kwargs["num_classes"] self.gpu = kwargs["gpu"] and torch.cuda.is_available() self.drop = nn.Dropout(self.dropout) self.embedding = Encoder.Embedding( self.vocab_size, self.embed_dim, dropout=self.dropout, init_emb=kwargs["init_embedding"] if "inin_embedding" in kwargs.keys() else None, ) self.embedding_layer = Encoder.Linear(self.embed_dim, self.hidden_size) self.encoder = Encoder.LSTM( input_size=self.embed_dim, hidden_size=self.hidden_size, num_layers=1, bias=True, batch_first=self.batch_first, bidirectional=True ) self.bi_attention = Aggregator.Bi_Attention() self.mean_pooling = Aggregator.MeanPoolWithMask() self.max_pooling = Aggregator.MaxPoolWithMask() self.inference_layer = Encoder.Linear(self.hidden_size * 4, self.hidden_size) self.decoder = Encoder.LSTM( input_size=self.hidden_size, hidden_size=self.hidden_size, num_layers=1, bias=True, batch_first=self.batch_first, bidirectional=True ) self.output = Decoder.MLP([4 * self.hidden_size, self.hidden_size, self.n_labels], 'tanh', dropout=self.dropout)
[docs] def forward(self, premise, hypothesis, premise_len, hypothesis_len): """ Forward function :param premise: A Tensor represents premise: [batch size(B), premise seq len(PL)]. :param hypothesis: A Tensor represents hypothesis: [B, hypothesis seq len(HL)]. :param premise_len: A Tensor record which is a real word and which is a padding word in premise: [B, PL]. :param hypothesis_len: A Tensor record which is a real word and which is a padding word in hypothesis: [B, HL]. :return: prediction: A Dict with Tensor of classification result: [B, n_labels(N)]. """ premise0 = self.embedding_layer(self.embedding(premise)) hypothesis0 = self.embedding_layer(self.embedding(hypothesis)) _BP, _PSL, _HP = premise0.size() _BH, _HSL, _HH = hypothesis0.size() _BPL, _PLL = premise_len.size() _HPL, _HLL = hypothesis_len.size() assert _BP == _BH and _BPL == _HPL and _BP == _BPL assert _HP == _HH assert _PSL == _PLL and _HSL == _HLL B, PL, H = premise0.size() B, HL, H = hypothesis0.size() a0 = self.encoder(self.drop(premise0)) # a0: [B, PL, H * 2] b0 = self.encoder(self.drop(hypothesis0)) # b0: [B, HL, H * 2] a = torch.mean(a0.view(B, PL, -1, H), dim=2) # a: [B, PL, H] b = torch.mean(b0.view(B, HL, -1, H), dim=2) # b: [B, HL, H] ai, bi = self.bi_attention(a, b, premise_len, hypothesis_len) ma = torch.cat((a, ai, a - ai, a * ai), dim=2) # ma: [B, PL, 4 * H] mb = torch.cat((b, bi, b - bi, b * bi), dim=2) # mb: [B, HL, 4 * H] f_ma = self.inference_layer(ma) f_mb = self.inference_layer(mb) vat = self.decoder(self.drop(f_ma)) vbt = self.decoder(self.drop(f_mb)) va = torch.mean(vat.view(B, PL, -1, H), dim=2) # va: [B, PL, H] vb = torch.mean(vbt.view(B, HL, -1, H), dim=2) # vb: [B, HL, H] va_ave = self.mean_pooling(va, premise_len, dim=1) # va_ave: [B, H] va_max, va_arg_max = self.max_pooling(va, premise_len, dim=1) # va_max: [B, H] vb_ave = self.mean_pooling(vb, hypothesis_len, dim=1) # vb_ave: [B, H] vb_max, vb_arg_max = self.max_pooling(vb, hypothesis_len, dim=1) # vb_max: [B, H] v = torch.cat((va_ave, va_max, vb_ave, vb_max), dim=1) # v: [B, 4 * H] prediction = F.tanh(self.output(v)) # prediction: [B, N] return {'pred': prediction}
def predict(self, premise, hypothesis, premise_len, hypothesis_len): return self.forward(premise, hypothesis, premise_len, hypothesis_len)