Source code for fastNLP.models.snli

import torch
import torch.nn as nn
import torch.nn.functional as F

from fastNLP.models.base_model import BaseModel
from fastNLP.modules import decoder as Decoder, encoder as Encoder


my_inf = 10e12


[docs]class SNLI(BaseModel): """ PyTorch Network for SNLI. """ def __init__(self, args, init_embedding=None): super(SNLI, self).__init__() self.vocab_size = args["vocab_size"] self.embed_dim = args["embed_dim"] self.hidden_size = args["hidden_size"] self.batch_first = args["batch_first"] self.dropout = args["dropout"] self.n_labels = args["num_classes"] self.gpu = args["gpu"] and torch.cuda.is_available() self.embedding = Encoder.embedding.Embedding(self.vocab_size, self.embed_dim, init_emb=init_embedding, dropout=self.dropout) self.embedding_layer = Encoder.Linear(self.embed_dim, self.hidden_size) self.encoder = Encoder.LSTM( input_size=self.embed_dim, hidden_size=self.hidden_size, num_layers=1, bias=True, batch_first=self.batch_first, bidirectional=True ) self.inference_layer = Encoder.Linear(self.hidden_size * 4, self.hidden_size) self.decoder = Encoder.LSTM( input_size=self.hidden_size, hidden_size=self.hidden_size, num_layers=1, bias=True, batch_first=self.batch_first, bidirectional=True ) self.output = Decoder.MLP([4 * self.hidden_size, self.hidden_size, self.n_labels], 'tanh')
[docs] def forward(self, premise, hypothesis, premise_len, hypothesis_len): """ Forward function :param premise: A Tensor represents premise: [batch size(B), premise seq len(PL), hidden size(H)]. :param hypothesis: A Tensor represents hypothesis: [B, hypothesis seq len(HL), H]. :param premise_len: A Tensor record which is a real word and which is a padding word in premise: [B, PL]. :param hypothesis_len: A Tensor record which is a real word and which is a padding word in hypothesis: [B, HL]. :return: prediction: A Tensor of classification result: [B, n_labels(N)]. """ premise0 = self.embedding_layer(self.embedding(premise)) hypothesis0 = self.embedding_layer(self.embedding(hypothesis)) _BP, _PSL, _HP = premise0.size() _BH, _HSL, _HH = hypothesis0.size() _BPL, _PLL = premise_len.size() _HPL, _HLL = hypothesis_len.size() assert _BP == _BH and _BPL == _HPL and _BP == _BPL assert _HP == _HH assert _PSL == _PLL and _HSL == _HLL B, PL, H = premise0.size() B, HL, H = hypothesis0.size() # a0, (ah0, ac0) = self.encoder(premise) # a0: [B, PL, H * 2], ah0: [2, B, H] # b0, (bh0, bc0) = self.encoder(hypothesis) # b0: [B, HL, H * 2] a0 = self.encoder(premise0) # a0: [B, PL, H * 2] b0 = self.encoder(hypothesis0) # b0: [B, HL, H * 2] a = torch.mean(a0.view(B, PL, -1, H), dim=2) # a: [B, PL, H] b = torch.mean(b0.view(B, HL, -1, H), dim=2) # b: [B, HL, H] ai, bi = self.calc_bi_attention(a, b, premise_len, hypothesis_len) ma = torch.cat((a, ai, a - ai, a * ai), dim=2) # ma: [B, PL, 4 * H] mb = torch.cat((b, bi, b - bi, b * bi), dim=2) # mb: [B, HL, 4 * H] f_ma = self.inference_layer(ma) f_mb = self.inference_layer(mb) vat = self.decoder(f_ma) vbt = self.decoder(f_mb) va = torch.mean(vat.view(B, PL, -1, H), dim=2) # va: [B, PL, H] vb = torch.mean(vbt.view(B, HL, -1, H), dim=2) # vb: [B, HL, H] # va_ave = torch.mean(va, dim=1) # va_ave: [B, H] # va_max, va_arg_max = torch.max(va, dim=1) # va_max: [B, H] # vb_ave = torch.mean(vb, dim=1) # vb_ave: [B, H] # vb_max, vb_arg_max = torch.max(vb, dim=1) # vb_max: [B, H] va_ave = self.mean_pooling(va, premise_len, dim=1) # va_ave: [B, H] va_max, va_arg_max = self.max_pooling(va, premise_len, dim=1) # va_max: [B, H] vb_ave = self.mean_pooling(vb, hypothesis_len, dim=1) # vb_ave: [B, H] vb_max, vb_arg_max = self.max_pooling(vb, hypothesis_len, dim=1) # vb_max: [B, H] v = torch.cat((va_ave, va_max, vb_ave, vb_max), dim=1) # v: [B, 4 * H] # v_mlp = F.tanh(self.mlp_layer1(v)) # v_mlp: [B, H] # prediction = self.mlp_layer2(v_mlp) # prediction: [B, N] prediction = F.tanh(self.output(v)) # prediction: [B, N] return prediction
@staticmethod def calc_bi_attention(in_x1, in_x2, x1_len, x2_len): # in_x1: [batch_size, x1_seq_len, hidden_size] # in_x2: [batch_size, x2_seq_len, hidden_size] # x1_len: [batch_size, x1_seq_len] # x2_len: [batch_size, x2_seq_len] assert in_x1.size()[0] == in_x2.size()[0] assert in_x1.size()[2] == in_x2.size()[2] # The batch size and hidden size must be equal. assert in_x1.size()[1] == x1_len.size()[1] and in_x2.size()[1] == x2_len.size()[1] # The seq len in in_x and x_len must be equal. assert in_x1.size()[0] == x1_len.size()[0] and x1_len.size()[0] == x2_len.size()[0] batch_size = in_x1.size()[0] x1_max_len = in_x1.size()[1] x2_max_len = in_x2.size()[1] in_x2_t = torch.transpose(in_x2, 1, 2) # [batch_size, hidden_size, x2_seq_len] attention_matrix = torch.bmm(in_x1, in_x2_t) # [batch_size, x1_seq_len, x2_seq_len] a_mask = x1_len.le(0.5).float() * -my_inf # [batch_size, x1_seq_len] a_mask = a_mask.view(batch_size, x1_max_len, -1) a_mask = a_mask.expand(-1, -1, x2_max_len) # [batch_size, x1_seq_len, x2_seq_len] b_mask = x2_len.le(0.5).float() * -my_inf b_mask = b_mask.view(batch_size, -1, x2_max_len) b_mask = b_mask.expand(-1, x1_max_len, -1) # [batch_size, x1_seq_len, x2_seq_len] attention_a = F.softmax(attention_matrix + a_mask, dim=2) # [batch_size, x1_seq_len, x2_seq_len] attention_b = F.softmax(attention_matrix + b_mask, dim=1) # [batch_size, x1_seq_len, x2_seq_len] out_x1 = torch.bmm(attention_a, in_x2) # [batch_size, x1_seq_len, hidden_size] attention_b_t = torch.transpose(attention_b, 1, 2) out_x2 = torch.bmm(attention_b_t, in_x1) # [batch_size, x2_seq_len, hidden_size] return out_x1, out_x2 @staticmethod def mean_pooling(tensor, mask, dim=0): masks = mask.view(mask.size(0), mask.size(1), -1).float() return torch.sum(tensor * masks, dim=dim) / torch.sum(masks, dim=1) @staticmethod def max_pooling(tensor, mask, dim=0): masks = mask.view(mask.size(0), mask.size(1), -1) masks = masks.expand(-1, -1, tensor.size(2)).float() return torch.max(tensor + masks.le(0.5).float() * -my_inf, dim=dim)